
CS-TR-3748
UMIACS-TR-97-10
February 1997

Automated Computation of Decomposable
Synchronization Conditions

-mmmtfr ■n

I. 'approved for public release?
Distribution UnJixRioad

mmmmmm—*

Gilberto Matos
James Purtilo

Elizabeth White

Ü^LQ'^LW.^- mUFELYEti §

SCIENCE
TECHNICAL

BEPORT

Automated Computation of Decomposable

Synchronization Conditions

Gilberto Matos James Purtilo

Computer Science Department and Institute
for Advanced Computer Studies

University of Maryland
College Park, MD 20742

Elizabeth White

Department of Computer Science
George Mason University

ABSTRACT: The most important aspect of concurrent and distributed computation
is the interaction between system components. Integration of components into a sys-
tem requires some synchronization that prevents the components from interacting in ways
that may endanger the system users, its correctness or performance. The undesirable
interactions are usually described using temporal logic, or safety and Hveness assertions.
Automated synthesis of synchronization conditions is a portable alternative to the man-
ual design of system synchronization, and it is already widespread in the hardware CAD
domain. The automated synchronization for concurrent software systems is hindered by
their excessive complexity, because their state spaces can rarely be exhaustively analyzed
to compute the synchronization conditions. The analysis of global state spaces is required
for Hveness and real-time properties, but simple safety rules depend only on the refer-
enced components and not on the rest of the system or its environment. Synchronization
conditions for delayable safety critical systems can be computed without the state space
analysis, and decomposed into single component synchronization conditions. Automated
synthesis of decomposable synchronization conditions provides a solid groundwork for the
independent design of system components, and supports reuse and maintenance in concur-
rent software systems. This approach to integration of concurrent systems is embodied by
GenEx, an analysis and synchronization tool that integrates system components to satisfy
a given set of safety rules, and produces executable systems.

This research is Supported by the Office of Naval Research under contract ONR N000149410320

1 Introduction and Motivation

Synchronization is an important aspect in the development of complex concurrent sys-
tems. Most programming languages lack synchronization support, or are limited to simple
synchronization protocols (like mutual exclusion supported by Java). Due to the absence
of explicit synchronization support, reliability verification for complex concurrent systems
relies on informal methods. Inspections and testing can find errors, but their absence can
not be asserted without formal verification. Reliability based on inspections and testing
is probabilistic and depends on the structure and complexity of the system. This level of
reliability is not satisfactory for the safety-critical systems.

Automated formal verification can verify the absence of errors, assert a system's reliabil-
ity, and find errors earlier in the development process thus reducing the development
cost [Man96]. Formal development methods are widely used in the research commu-
nity [Man96], but their acceptance in development environments is lagging. The main
reasons for this are the high level of skill that is generally required for formal verification,
its lack of scalability, and its resistance to incremental system evolution [dLSA95].

Automated correction of inconsistencies between software systems and requirements is gen-
erally undecidable, but there are some domains where this approach is a viable alternative
to manual error correction [EC82]. Most current formal approaches to concurrent systems
use finite state machines (FSM) to model components, and finite state domains can be
effectively analyzed and transformed. Error correction in FSM-based delayable systems
is automated by computing the synchronization conditions from the detected requirement
violations. The synchronization conditions restrict the system behavior, and the result-
ing system model satisfies its safety requirements [Lim96]. The automated rule-based
synchronization process takes the description of a system and its safety rules, and pro-
duces a synchronized model that satisfies safety, and an executable implementation of that
model (see Figure 1). The user specifies the system as a set of components and variables,
where the components read and write the variables to communicate with the environment
and with each other. The user also provides a set of safety rules that reject some states
and execution paths representing safety violations. The automated synchronization tool
determines the preconditions for the safety violations and uses them to compute the syn-
chronization conditions for each component. Adding the synchronization conditions to the
components makes the system comply with the given safety rules.

Previous research in the area of automated synchronization was concentrated in two do-
mains. Theorical research discussed the complexity of automated synchronization for tem-
poral logic assertions [EC82]. The complexity of system synchronization for temporal logic
assertions is exponential, and not all formulas can be satisfied by synchronizing the system
components. Attempts at practical synchronization concentrated on constrained systems

such as hardware-based systems [Lim96] or a sequential safety kernel [WK95]. These do-
main restrictions provide a limit on the system complexity or make the synchronization
trivial as in the safety kernel case.

Automated synchronization of concurrent software systems is the primary goal of our
research. Analysis of the full state space for a software system is not a viable approach,
and therefore we envision an approach for a restricted set of properties that allows the
partition of the analysis and synchronization process. In such an approach, the complexity
of the analysis and synchronization is independent from the complexity of the whole system,
and depends only on the complexity of the referenced components.

We propose automated rule-based synchronization as an alternative method for developing
and maintaining concurrent systems with complex safety requirements. This method, as
implemented in the prototype tool GenEx, generates reliable synchronization for a variety
of execution environments ranging from single processors to distributed systems. Unlike
previous approaches, GenEx can synchronize systems even if their combined reachability
graph is too complex to compute. The unlimited complexity of systems that GenEx
can synchronize makes it a practical software development tool for complex concurrent
applications.

Section 2 describes the formalisms and notations used in GenEx, and gives a brief descrip-
tion of the automated rule-based synchronization process on a simple concurrent system.
A high level overview of the computation and use of the synchronization conditions is in
Section 3, followed by a detailed description of the algorithms in Section 4. Section 5 gives
a brief overview of other work related to our own, and explains the differences. Section 6
outlines the work we propose to do in the future, and the conclusion presents the benefits
of this method.

2 Notation and a Driving Example

This section introduces the FSM-based notation for representing the behavior of concurrent
systems, and describes the capabilities of automatic synchronization on a client-server
access example.

2.1 Finite State Machine Representation in GenEx

GenEx uses a FSM notation inspired by the tabular notation used in SCR [Hen80], and
functionally equivalent to a subset of the SMV notation [McM93]. Each component is
a Mealy finite state machine [JEH79]. The system contains a set of Boolean variables

FSM Description of
System Components

System Safety Rules

Synchronization
Algorithm

Synchronized and
Reliable System

Code Generation
Algorithm

Reliable Synchronized
System Implementation

Figure 1: Automated Rule-Based Synchronization Process Overview

that can be monitored(external) or controlled (internal), and these variables are the inputs
and outputs of the components or the environment. For a given group of components,
controlled variables are those that contain the output from some of the components in the
group, and all other variables are monitored. Only one component is allowed to control a
given variable, by setting or resetting its value. In the client example shown in Figure 2,
req and dene are monitored variables and accessing is controlled by the component.
Whenever a variable changes value, it produces an event, @T(req) when req becomes
true and @F(req) when it becomes false. Events get enabled only immediately after a
variable changes value, and get disabled when the variable's value stabilizes. The initial
state of the system is defined by the initial states of all components and initial values of
the variables.

Each component is specified as a stand-alone unit, and the system is specified by instan-
tiating the components and the safety rules that apply to them. The specification of each
component starts with its name and initial configuration. The initial configuration contains
the initial state, and it may also contain some restrictions on controlled and monitored
variables. The transition table for each state contains a list of transitions that may be
activated in that state. The enabling condition, destination state and the effects define
every transition. The enabling condition is a conjunction of event and variable values , or
the keyword 'ELSE' for the default transition. The default transition is executed whenever
none of the other transitions is enabled, and it makes the transition set complete. If the
enabling conditions overlap for two transitions, their precedence is used to determine the
priority when the component is executed. The effects associated with a given transition are
changes in the value of controlled system variables, and calls to data processing segments.

GenEx uses the synchronous execution semantics similar to SMV [McM93], Esterei [BG92]
and LUSTRE [CRR91]. When the transitions are executed, every component updates
the values of its controlled variables, and shares that data with all other components.
A transition is enabled when the associated combination of events and conditions is true.
The monitored variables are sampled and all components receive their current value. Every
transition takes a finite time to execute, and that is the sampling interval for the monitored
variables.

The synchronous execution model simplifies the system analysis and the code generation
for the synchronized system. The most important aspect of the synchronous execution is
the immediate distribution of the global state information, that allows the components to
make synchronization decisions locally, based only on the state data. While the system
is analyzed assuming synchronous transitions in all components, this assumption is not
practical for distributed systems. The synchronous execution assumption can be weakened
for asynchronous and distributed environments while preserving the safety and reliability
of the generated system.

A sample execution illustrates the semantics of GenEx in Figure 3. The time-line shows the
changes in the state of a client component, and the values of the monitored and controlled
variables leading to or resulting from the transitions. The event @T(req) causes the
component to make the transition from the state local to access, and set the controlled
variable accessing to the value true. As long as the component is in the access state,
the value of the variable req and its events are irrelevant. When the monitored variable
done becomes true, it enables the transition from the state access to local, that resets
the value of accessing to false. All components execute one transition in parallel and
share their state data and controlled variables before the next one.

The component specification in Figure 2a provides a description of a single component.
System specification consists of a set of component specifications and safety rules. The

a)
Component Client
Initial local, !req, !done, {accessing;
State local

WHEN @T(req) access set (accessing);
else local;

State access
WHEN (done) local reset (accessing);
else access;

b)
lx/1

Input Signals : req, done

Output Signal: accessing

xl/0

Figure 2: Textual and graphical FSM representation of a client component

safety rules describe the system behaviors that are undesirable in the final product, and
restrict the domain of valid behaviors. Safety rules of interest for the client-server system
deal mainly with the mutual exclusion and the desired ordering of the accesses. Mutual
exclusion requires distinct clients to access the server during nonoverlapping intervals. The
client accesses can be ordered using a specific access protocol such as priority or FIFO.

GenEx accepts the safety rules represented using finite state machines or regular expres-
sions [JEH79]. Both representations are functionally equivalent but suitable for different
types of safety rules. The FSM representation of safety rules is similar to the component
representation with only minor distinctions. The FSM for safety rules have no interface
to the data processing code, and they contain a state with the predefined name reject for
the rejecting state. Rejection of an execution sequence by a safety rule FSM represents a
safety violation. The FSM safety rules use the component's output and state variables,
and monitored variables as their input, and produce their own state data as output. The
state data from safety monitoring FSM is used by the synchronization algorithm to prevent
safety violations.

The following regular expression-defined safety rule defines strict alternation of two clients'
accesses, beginning with an access by the first client:

AllPaths e (((access(l))+)((access(2))+))*

@T(REQ)

REQ

DONE

ACCESSING

STATE

■^^

NEW VALUE OF A CONTROLLED

VARIABLE IS DECIDED AT THE TIME

OF THE TRANSITION, BUT IT IS

USED WHEN THE MONITORED

VARIABLES ARE SAMPLED

THE VALUE OF MONITORED VARIABLES

HAS NO INFLUENCE ON THE

COMPONENT TRANSITIONS.

TRANSITION TIMES VARIABLE SAMPLING

Figure 3: The execution semantics of the model

GenEx converts the regular expressions into the deterministic FSM representation before
computing the synchronization conditions. Rejection of an execution sequence by a safety
rule FSM represents a safety violation. The regular expression notation is more compact
then the FSM notation, but its applicability is limited to simple rules like invariants and
predefined sequences. For more complex rules the FSM notation offers better readability
and simpler changes.

2.2 Client-Server System

The client-server system consists of a set of independent clients connected to a shared
server. Depending on the nature of the interactions, as well as the capabilities of the
server, the clients can access the server simultaneously, or be restricted to concurrent or
exclusive access1. Different specialized subclasses of client-server systems can be derived
by asserting different sets of safety rules, as well as new versions of existing systems when
components or safety rules change. The main rules for the client synchronization deal with
contol of simultaneous accesses, and with explicit ordering of accesses.

• Mutual Exclusion
Some or all clients may be able to adversely influence each other when their accesses
are concurrent, or the server may be unable to handle concurrent accesses. If this

1 Simultaneous access applies when the server can accept several request simultaneously, while concur-
rent access refers to transaction-style accesses.

Priority access for a pair of processes
!access2

reql &laccessl
& access2

req 1, req2 requests for appropriate components

access 1, access2 component in critical section

FIFO property for a pair of processes

reql & req2
&laccessl & !access2

Figure 4: Graph representation of the FIFO and priority properties

is the case, some or all clients have to be restricted to mutually exclusive access.
Mutual exclusion is a simple invariant safety rule, and it is defined by a single state
FSM or by the regular expression below. The safety rule references the components'
states and controlled variables to determine if the violation condition occurs.

— assert AllPaths € (-■(access(2) & access(3)))*
This is a singular mutual exclusion rule for clients 2 and 3

- forall(i,j G 1..3, i < j) assert AllPaths € (-^(access(i) & access(j)))*
Generalized rule for all pairs of clients in the system

• Access Protocols
The order of client accesses may be a factor in the system performance and relia-
bility. Access protocols allow the user to define the appropriate order for a given
implementation, and make them a part of the system specifications. Priority and
FIFO <i.-'.;ess protocols are illustrated by FSM in Figure 4. The priority access rule
gives precedence to higher priority clients when lower priority clients are waiting for
access, regardless of the order of requests.2 The safety rule for priority access rejects

2In their original form, the clients make the transition to the access state immediately after receiving a
request, but synchronization means that some accesses can be delayed. When components are delayed in

8

access by the lower priority component (access2 in this case) while the higher pri-
ority component is waiting for access. The rule is not preemptive, and the higher
priority requests will not force lower priority components to end or suspend their
access. The FIFO access rule requires the accesses to the server to occur in order
of their respective request signals. Figure 4b) shows the rule that rejects access2
if reql was active before req2 occured. This rule makes client2 respect FIFO and
another similar rule is needed to make clientl delay on previous requests by client2.

• Global Sequences
Some systems may require specific sequences of accesses, like round-robin access
or interleaving of different groups of clients. Sequencing rules can synchronize the
system into a desired global pattern of accesses. A simple sequencing rule requires
the components clientl, client2 and client3 to access the server in this order. This
sequence may be necessary because their actions are dependent on the previous
accesses by other components. The following rule requires this sequence of accesses.

assert AllPaths € ((accessl)+(access2)+(access3)+)*

This system consists of a set of client processes, which get synchronized in their accesses to
a shared server.3 The safety rules in the system require mutual exclusion of client accesses,
and FIFO policy for delayed accesses. GenEx processes this system specification and
generates a synchronized and safe system implementation. The automatic synchronization
allows simple modifications of the system, by adding or removing safety rules that restrict
its behavior.

To illustrate the maintenance and reuse support, suppose the system is later modified to
the priority access policy between two classes of clients. The system will be resynchronized
according to the modified specifications without manual modifications to the components.
A manually implemented client-server system can satisfy a fixed set of safety properties,
but additions or modifications can require extensive design and verification rework. Formal
reliability verification of the specifications is meaningless when the implementation or
maintenance is done manually.

2.3 Synchronization of Clients

The two clients in Figure 5 access a shared server, and given the safety rules from the
previous section, their simultaneous access is a mutual exclusion violation. Figure 5c) shows

accessing the server the FIFO policy limits their delay to the completion of the accesses that were initiated
earlier.

3The server is not described here, but it handles only the data processing of the client requests, not
their synchronization.

I local I laccess)

FSM Representation of
a.) One Component

^Safety violation * '

b) Combining Two Components c) Combined Reachability Graph

Figure 5: Conceptual representation of safety violation

the reachability graph that represents all execution sequences for this system, including
some that violate the mutual exclusion rule. The state preceding the violation contains
the information on the causes that lead to the violation, and this information can be
extracted and used to prevent the safety violations from happening. In this case, the
violation occurs when one component enters the access state while the other is already
accessing the server, or when both components request access simultaneously. Using finite
state models and model checking tools, these violations are easy to detect and analyze.

The concept of delayed execution is simple to capture in systems based on finite state ma-
chines. The transitions that can cause safety violations are modified by adding a delay state
that is used to block the component until the conditions for proceeding to the destination
state are met. The transition from local to access is the only transition that can cause the
safety violation, and a delayed transition is shown in Figure 6a). The enabling condition
for the original transition is combined with the safety violation preconditions to derive the
enabling condition of the delayed transition. The delayed transition is not enabled unless
the original transition is enabled and a safety violation is imminent. Figure 6c) shows how
the safety violation state present in Figure 5 can be avoided by delaying the transition from
local to access when it can violate the safety rule. One or more components are delayed
when the completion of their transitions can cause safety violations. In the global reach-
ability graph, the delayed transition of some component produces a redirected combined
transition that leads to a safe state. This solution is very similar to using a semaphore or
lock to guard the access, but it has the advantage of greater scalability and portability.
The automatic synchronization is computed based on the given safety rules, and can be
recomputed whenever the safety rules or components change.

Automatic synchronization of interacting processes, as outlined above, is conceptually sim-
ple, but the combinatorial complexity of the global interactions makes it computationally

10

(local! ^"^ laccess)

Representation of a single
component with a delayed
transition

Combined delayed components

Violation state is
now unreachable

Safety Violation Transitions
Delayed to Satisfy Safety

Figure 6: Delaying transition to preserve safety

intensive, with a potential for exponential growth. Figure 6 gives an example of the kind
of modifications that are used to automatically synchronize systems. While the combined
reachability graph for all components makes it simple to find safety violations, the size
of the graph may make it impossible to construct. Our approach to automatic synchro-
nization is oriented toward computing the synchronization conditions for each component
without constructing the global reachability graph for the whole system. This is possible
for a constrained but nontrivial set of safety rules.

GenEx uses only delays to synchronize the systems and make them satisfy the safety rules.
The usage of delays obviously restricts the satisfiable safety rules to those that do not
require real-time behavior. The non-real-time nature of satisfiable rules is a major factor
in the decomposability of the synchronization process, because real-time requirements
make the time a globally shared variable. A system can be synchronized to satisfy all
given FSM-based non-real-time safety rules, and real-time rules can be detected and the
user warned. Synchronizing the system for real-time rules leads to creation of deadlocks, as

11

does the existence of conflicting safety rules. Even the synchronization for nonconflicting
safety rules can sometimes lead to deadlocks, so the deadlock verification is an indispensable
part of the development process.

3 Safety-Based Synchronization

The automated synchronization system computes the synchronization conditions for a
system of user-defined components. The synchronized system consists of a synchronization
skeleton and data processing code segments supplied by the user. Automated safety-based
synchronization solves a conceptually simple but combinatorially very complex and time
consuming problem, and helps produce a more reusable and maintainable system.

The user provides three distinct parts in the system definition: the component description,
the safety rules and the system instance. The component description provides a formal
model that defines the functionality of each component, and the interface linking the finite-
state control to the separate data processing implementation. Every component is defined
as a deterministic finite state machine, triggered by combinations of signal values. Every
state in a component is associated with some component activity that can interact with
other components or the environment 4. All components are independent except for the
interactions using controlled variables.

the local properties it has to satisfy, and that the

Another part of the system description is the definition of all safety rules that the system
must satisfy. These safety rules are defined as finite state machines based on an alphabet
that contains all component states and all monitored and controlled variables in the system.
The safety rule for mutual exclusion in Figure 7a) shows how a safety rule is defined, and
how it references system components and variables. The system instance specifies how
the components are instantiated, and what safety rules are defined for them. The system
description may also contain the equivalent description of the system when it is used as a
component of a larger system. In our client-server example, all client modules behave in a
similar way, and they can be described by instantiating the basic behavior and adding rules
to achieve specific behaviors. Figure 7b) shows the instantiation of a system of clients
where the safety rule for mutual exclusion is replicated for every pair of components, and
priority access specializes the components into two priority classes.

The process of automatic synchronization, as illustrated in Figure 8, consists of several
steps where the synchronization conditions are computed and decomposed to components,

4When a component is denned with more states then necessary, it increases the complexity of the
analysis and the computation of synchronization conditions.

12

a)
Restriction mutex(i,j)
Reference client (i), client(j);
Initial state_OK & client(i)=local &: client(j)=local
State state_OK

WHEN (client(i)=access) &; (client(j)=access) reject;
else state.OK

end Restriction;
b)
System access_order;
Modules: client(i: i in 1 .. 4);
Restrictions:
forall(iJ in 1 .. 3 & i!=j) assert(mutex(i,j));
forall(i in 1 .. 2, j in 3 .. 4) assert(prio(ij));

Figure 7: A FSM description of a safety rule and a sample system instance

and the executable code for them is generated. The automatic synchronization algorithm
computes the component synchronization conditions that make the system comply with
the safety rules. The code generation algorithm generates executable models of the syn-
chronized system components, and links them together and with the data processing code.

Automatic Synchronization is based on delaying selected components in order to make
safety violations unreachable. The delays are applied only on the violating transitions;
i.e. those transitions that trigger the safety violations. The violating transitions are
substituted by their delayed versions, where at least one component is delayed until its
transition can be safely completed. A general assumption in this process is that every
component is delayable and correct with respect to its requirements and that the goal of
the synchronization is to satisfy the global safety rules. When all safety rules are satisfied,
an additional check is performed to verify that the system satisfies its reachability and
liveness requirements, as well as implicit deadlock freedom. This is necessary to verify
whether the synchronization created any deadlocks. The satisfaction of these requirements
guarantees that the refinements in control are not at the expense of the functional behavior
of the system.

The computation of synchronization conditions requires the following steps:

1. The System Expansion step prepares the system for synchronization by enabling
the components to detect when their transitions can cause a safety violation, and by
providing them with an alternative execution that preserves safety. Delayed tran-
sitions are added to the components to make them synchronizable, and the global

13

SYSTEM COMPONENTS
AND SAFETY RULES

SYSTEM EXPANSION

EXPANDED SYSTEM
DESCRIPTION

SAFETY VIOLATION IDENTIFICATION

PRECONDITIONS FOR
SAFETY VIOLATIONS

DECOMPOSITION OF SYNCHRONIZATION CONDITIONS

COMPONENT SPECIFIC
SYNCHRONIZATION

CONDITIONS

ADDITION OF SYNCHRONIZED TRANSITIONS

SYNCHRONIZED
SYSTEM COMPONENTS

CODE GENERATION

DEADLOCK SEARCH

OR MODEL CHECKING

EXECUTABLE
SYSTEM

VERIFICATION
RESULTS

Figure 8: Process of Automatic Synchronization

system state is made accessible to every component that needs to detect potential
safety violations.

The components with potential for safety violation are modified to delay rather then
cause a safety violation. System components are defined as FSM that take the tran-
sitions between states when the system variables enable them. The synchronization
mechanism in GenEx is based on the delaying of transitions when they lead to a
safety violation. The concept of a delayed transition is implemented by introducing
one additional state for every transition that might need to be delayed. The delayed
"■ ^rsion of the transition is given a lower priority than the original transition, so if no

aty violations can occur, the transition is never delayed. Figure 9b illustrates the
■ clayed transition implementation for the Figure 9a before the safety analysis. If the
analysis finds that the transition could lead to a violation, the enabling condition of
the delayed transition REQ will be combined with a set of conditions ERRCOND

14

TRANSITION

(LOCAL j

ADDED DELAY SYNCHRONIZED DELAY

REQ

REQ & ERRCOND

REQ & IERRCOND

true

ERRCOND

(ACCESS)

Figure 9: A simple transition, a blank delayed transition, and a delayed transition with
added synchronization conditions

that is the precondition of the safety violation. This new version of the delayed
transition will get a priority that is higher then that of the original transition, thus
preempting its execution when a safety violation is imminent. The set of conditions
ERRCOND is also used to substitute the true condition that activates the looping
transition in the delay state, and its priority is raised above that of the transition to
the destination state. The transition from the delayed to the destination state will
occur only when there is no potential for a safety violation.

The system state variables are shared throughout the system to make components
aware of each others' state. These extended variables contain information on the
current states of the components, the priority of the components, and on the cur-
rent states of safety monitoring rules. When components have the access to all this
information in the decision on local transitions, the synchronization information can
be effectively extracted during the execution. These signals are also the main in-
terfacing mechanism between the components and the runtime support mechanisms.
The priority variables are generated by the runtime support mechanism, to help the
components decide on the transitions that are delayed. Other additional variables
can be used for advanced synchronization of sets of simultaneous transitions. Added
variables that encode the states of the components will not increase the complexity
of the reachability graph because they represent state information in a condensed
form. Priority variables will add to the complexity of the executable system, but
they are used only when safety violations are corrected, and then they are added to
the refined system without influencing the analysis process.

15

The Safety Violation Identification step, when the system behavior is checked
with respect to the safety rules. Since the analysis is limited to non-real-time safety
rules, all safety violations are detectable from the behavior of the referenced com-
ponents only instead of the whole system. The preconditions of the detected safety
violations provide the basis for the computation of the synchronization conditions.
Several processes can detect the safety violations, with different levels of complexity
and precision. GenEx currently detects safety violations by constructing the reacha-
bility graph for the subset of components that are referenced by the safety rule. This
process has exponential complexity, but for a single safety rule with several refer-
enced components it is within the reach of modern computers. A different approach
to detecting safety violations is possible, but is not yet implemented. This static ap-
proach uses only the description of the components and safety rules to find potential
safety violations, but it can identify unreachable violations, and the performance of
the synchronized system may be reduced as a result.

The combined reachability graph is constructed for components referenced by a safety
rule, in order to determine if their interaction can cause a safety violation. The
descriptions of components that are referenced by a safety rule are combined to
generate a model of their behavior. The combined state space contains all reachable
violations of the safety rule, allowing GenEx to identify them and correct them by
delaying some of the components contributing to the violations. The components
are combined with their respective delayed transitions, so the combined reachability
graph contains the solutions to the violations. The delayed transitions are enabled
by the same conditions that enable the original transitions, so they are treated as
nondeterministic choices for the analysis purposes. By expanding the behavior that
follows a delayed transition, GenEx analyzes all behaviors of the system, including
those that will result from delaying the detected safety violations.

Even if the reachability graph is too complex to construct, a static violation source
graph (see Figure 10) can be created to identify potential rule violations. The static
violation source graph is a graph that only contains violation states and all of their
predecessor states, whether reachable or not. The complexity of this graph is very
likely to be lower then that of the reachability graph, making it possible to analyze
and synchronize more complex safety rules with more referenced components. The
disadvantage of not creating the reachability graph is that deadlocked states may
remain undetected, requiring further global checking.

Consider the mutual exclusion rule for Client 1 and Client2 and their combined reach-
ability graph as in Figure 5c). Since the components Client 1 and Client2 both have
two states, the reachability graph can have at most four distinct states 5. When

5In this case the size is bounded by the product of the component sizes, because the safety and controlled
variables are dependent on the current state of the components. The safety rules like priority or FIFO,
with multiple non-rejecting states, and controlled variables that contain information on previous states

16

REMAINDER OF THE

REACHABILITY GRAPH

UNREACHABLE STATES

JL

STATES WHICH CAN POTENTIALLY

LEAD TO REJECT STATE

REGARDLESS OF THEIR

j REACHABILITY

Figure 10: The violation precedence graph, contains all system configurations from which a
violation would be possible.

the system is expanded with the delayed transitions, the reachability graph becomes
similar to the one in Figure 6c), with the transitions to the safety violation state still
active.

The Figure 11 shows the transition table for the initial state in the combined reach-
ability graph. It shows the enabling conditions for transitions to different system
states. Destination state is represented by a pair of component states, and the safety
rule state. The state jaccess , access, reject^, reachable by the transition number
six, represents a safety violation. All violations of the safety rules will appear as
global states that include the rejecting state for some safety rule FSM. The enabling
condition for the transition to the safety violation state also enables transitions 7, 8
and 9, to states <access, delay>, <delay, access> and <delay, delay>. Each
one of those transitions can substitute the violating transition as necessary. The
precondition for this safety violation is a conjunction of the current system state and
the enabling condition for the violating transition; in this case it is locall & local2

increase the potential complexity of the reachability graph in proportion with their complexity(number of
states for safety rules or two for boolean controlled variables).

17

Enabling <Client(1),Client(2),mutexl2>

Condition Destinat ion State

1 !reql & !req2 <local , local , state_0K>

2 !reql & req2 <local , access , state_0K>

3 !reql & req2 <local , delay , state_0K>

4 reql & ireq2 <access , local , state_0K>

5 reql & !req2 <delay , local , state_0K>

6 reql & req2 <access , access , reject >

7 reql & req2 <access , delay , state_0K>

8 reql & req2 <delay , access , state_0K>

9 reql & req2 <delay , delay , state_0K>

Figure 11: Combined transitions from the state <local,local>

&: reql &: req2.

3. The Decomposition of Synchronization Conditions is a process where the
safety violation preconditions are partitioned into synchronization conditions for com-
ponents. Every synchronization condition consists of the violation precondition and a
selection part that nondeterministically chooses the delayed components. Whenever a
combined transition leads to safety violation, a nondeterministic decision is added to
choose some safe subset of transitions that are taken, while the rest are delayed. The
transition leading to <access,access> in Figure 11 can be removed and substituted
by the transitions to states <access,delay>, <delay,access> or <delay,delay> that
have the same enabling conditions 6. One of the components client 1 or client2 has
to be delayed to preserve safety, and this nondeterministic choice can be represented
as relative execution priority. The variable priol2 represents this nondeterministic
choice, and is randomly controlled by the runtime support environment. Synchro-
nization condition for each client guarantees that the client will delay its transition
only if violation preconditions occur, and the union of all synchronization conditions
for a given violation is equal to the violation precondition, guaranteeing that the
violation will never occur in the execution.

The component client2(clientl) is delayed when the violation precondition occurs and
the variable priol2 is true(false), meaning that client2(client 1) has lower priority.
The resulting combined transitions preserve safety, by redirecting the violating tran-

che state <delay,delay> is reached only if both components are delayed, and this safety rule can be
satisfied even with a single delayed component. Nevertheless, the transition to the state <delay,delay>
might be required in an execution when a third client is in its access state, and also requires exclusive
access.

18

Enabling <C[1] , C[2] >
Condition Destination State

!reql & !req2 <local , local >
ireql & req2 <local , access>
!reql & req2 <local , delay >
reql & !req2 <access , local >
reql & !req2 <delay , local >
reql & req2 & pric >12 <access , delay >
reql & req2 & !pric 12 <delay , access>
reql & req2 <delay , delay >

Figure 12: Reachable states that preserve the safety rule

sition to a safe system state. Delaying both components is not necessary because
a single delay is sufficient to avoid the safety violation. This means that no syn-
chronization condition has to be generated for that case. The combined transition
table for the state <local,local> after the removal of the mutual exclusion violation
is shown in Figure 12.

4. The Addition of Synchronized Transitions is a process that uses the decom-
posed synchronization conditions to create new delayed transitions for components.
This results in the creation of synchronized components that can be integrated with-
out causing safety violations. These transitions are assigned a higher priority then
the existing transitions in order to preempt their activation when the synchronization
is necessary.

To guarantee the preservation of the mutual exclusion rule starting from state
<local,local > , we have to add one delayed transition to each of the two compo-
nents. Adding a delayed transition to client2 with the enabling condition
locallAlocal2AreqlAreq2Apriol2, and giving that transition a priority that is
higher than the original transition to the access state guarantees the mutual exclu-
sion when priol2 holds, i.e. when clientl has priority. No changes are necessary in
client 1 when it has priority because the delay of the other component is sufficient to
satisfy the safety. The enabling condition locallAlocal2AreqlAreq2A-'priol2 for
the delayed transition of the component clientl guarantees that the mutual exclu-
sion is satisfied when the component client2 has priority. This synchronization step
is executed for every combined state that can lead to a safety violation, and thus
more than one version of the delayed transition may be necessary. For example, the
component clientl requires another delayed transition with the enabling condition
locallAaccess2Areql to guarantee that it delays until the component client2 exits

19

its access state.

5. Model Checking of the system is necessary to verify the functionality of the syn-
chronized system. If the given safety rules have some real-time requirements, or if
a set of safety rules is inconsistent with the system, the synchronization will result
in the existence of deadlocked states. Another source of deadlocks is the circular
dependence between synchronized components. GenEx generates a model of the
synchronized system in the SMV [McM93] notation that allows symbolic checking of
very complex systems. The deadlocks can involve components that are not referenced
by a single rule, so the full system may have to be checked. The complexity of indus-
trial scale systems is probably beyond the capabilities of SMV, so other approaches
to deadlock detection are necessary. As in the case of safety violation detection, a
static method can be used to verify the existence of deadlocks.

The static deadlock search method is based on a search for cycles in the delay-
dependency graph. This graph can be constructed from the component and safety
rule definitions, without combining their behaviors, and is therefore of polynomial
complexity. The drawback of this method is that it can report unreachable deadlocks
that prevent the user from using a deadlock-free system until a more detailed analysis
proves its correctness. This static method is currently not a part of GenEx, but it
is a planned addition, and will be discussed in more depth in the proposed work
section.

Together with deadlock verification, model checking tools can verify that the synchro-
nized system satisfies some reachability, liveness or real-time specifications. These ,
classes of properties either propagate dependencies between parts of the system, or
are unenforceable because they require control of the input from the environment.
These properties are very important for the correctness of a system, so even if enforc-
ing them is not an option, their preservation can be formally verified. The automat-
ically computed synchronization conditions that guarantee safety are also minimal
in the sense that no acceptable states are made unreachable. This guarantees the
preservation of all reachability and liveness properties, as long as they are consistent
with the safety properties of the system. 7 The model checking can be done with the
original components, and all the properties that can be satisfied without violating
the safety will be preserved in the synchronized system.

6. Code Generation produces the executable versions of all synchronized components,
as well as the interfaces to the runtime support environment and links to the data
processing code. The code is generated separately for every component and includes
its delayed transitions. The components can be grouped for execution in arbitrary
ways, in a variety of execution environments. The runtime support is currently

7 A reachability property is inconsistent with the safety when the only way to satisfy the reachability
requires safety violations.

20

available only for centralized execution, and more general distributed versions are
planned.

The generated code is equivalent to the synchronized components, and the whole
system is guaranteed to satisfy the safety rules that it was synchronized for. Links
to the external data processing code are also generated according to the component
specifications. The priority signals are generated by the runtime support, and they
can be randomized to guarantee the fairness of the system. The fairness in the
selection of delayed components guarantees the preservation of the liveness properties
in the synchronized system.

4 Detailed Algorithm Description

In this section we will concentrate on the details of the automated computation of the
synchronization conditions. The synchronization process consists of the following phases:
single rule synchronization, global deadlock cleanup, and liveness checking. Two distinct
algorithms can be used to compute the necessary synchronization between the components,
and the choice depends on the number and complexity of the safety rules and components
that influence them. The deadlock prediction algorithm is global and is intended to prevent
deadlocks between components whose combined reachability graphs were not constructed
in the synchronization phase. Additional liveness and reachability checking can verify if
the synchronization prevents the system from completing its functional tasks.

4.1 Single Rule Synchronization Using the Reachability Graph

Combining related components is the first step in the reachability-based analysis of system
compliance with the safety rules. Only the components which are relevant to the property
are combined, thus limiting the complexity of the combined state space. This complexity
is a decisive factor in the practical applicability of the reachability-based analysis. The
analysis can be limited to the referenced components because the system is being synchro-
nized to satisfy safety rules. Safety rules depend only on the referenced components, so
the synchronization that satisfies them can ignore other components.

Since all components are represented by finite state machines, the combined state space
is a finite state machine. The safety rules are represented by FSM, and they have to be
included in the generation of the combined FSM, because some safety violations depend
on the previous safety related states of the system. The construction of the combined
reachability graph starts with the initial combined state sO, that is the combination of
initial states for all combined components, and the initial state for the safety rule. The
transitions in the combined reachability graph contain a set of component transitions, and

21

a transition for the safety rule. The component transitions tl of component cl and t2 of
c2 can be combined if they fall in one of the following categories for every system variable
v.

• Both tl and t2 require v to be true or @true.

• Both tl and t2 require v to be false or ©false.

• The enabling condition of at least one of the transitions tl and t2 is independent
from v.

The combined reachability also requires the consistency of the transitions with the pre-
ceding combined system state. Transition tl of component cl can take place in state s if
the state of cl in s is the source state of tl, and one of the following conditions holds for
every system variable v.

• Transition tl requires v to be true(false) and the present value of v in state s is
true(false).

• Transition tl requires the event @true(@false) to hold for v, and the present value
of v in state s is true(false), and previous value of v is false(true).

• The enabling condition of the transition tl is independent from v.

• Previous and present value of v are unrestricted in s. The value for a monitored
variable in a state is unrestricted when the combined transition to that state is
enabled regardless of the value of the variable.

The transition of the safety rule FSM also has to be consistent with the component transi-
tions in the combined transitions. The safety rule transition is enabled by the destination
states of the component transitions and by the new values of the controlled variables. In
other words, the transition of the safety rule is selected based on the result of the combined
transitions of all components. The transition computation for the reachability graph has
two phases: the composition of the component transitions, and the safety rule transition.
When the component transitions are combined and verified for consistency in the source
state, the resulting state is encoded into the expanded state variables. The enabling con-
dition for the safety rule is computed from the expanded state variables. If the enabled
transition for the safety rule leads to the reject state, the combined destination state is
a safety violation state, and the conditions that enable the combined transition are the
safety violation precondition. If any other state is the destination state for the safety rule
transition, the combined destination state is safe.

22

Source State

One Component
Delayed

Both Components
Complete Transitions

State reached when the client 1
completes the transition to access
state, and the client 2 is delayed.

When both clients complete their transitions
they trigger a safety violation.
A comparison with a delayed transition
that preserves the safety points to
the component that should be delayed.

Figure 13: Selection of delayed components and delay conditions

Every consistent combined transition from a state in the combined reachability graph leads
to another state in the graph. The graph is constructed by exhaustive expansion of every
new state to find its successors until all transitions lead to some already explored state.
Only transitions from the safe states are constructed and their destination states added to
the graph. The safety violation states will be made unreachable after the synchronization,
and that will make their successors unreachable as well.

The primary goal of the analysis phase is to find whether a safety rule is satisfied by
the system and, if it is not, to compute the synchronization conditions that make the
system safe. The combined reachability graph contains all reachable states of the system,
including safety violation states. The identification of safety violation states is a part of the
reachability graph construction. This is done to limit the construction of the reachability
graph to only those states that can be reached without safety violations. This way, the
states that are only reachable after safety violation states will not be included in the
reachability graph. The selection of delayed components is based on their contribution
to the safety violation. A component has to be delayed only when the completion of its
transition leads to a safety violation that is avoided when the transition is delayed.

For every pair of states ss and sv, connected by a combined transition t, where sv is a
safety violation state, the delay of the combined transition is propagated to the components
that contributed to the violation. Analysis of the differences between the states ss and sv
identifies the components that changed their state or controlled variables in the transition
t. To identify the components that caused the violation, the analysis looks at all states sd
reachable by a delayed transition td that satisfy the safety rules. The difference between

23

the delayed transition td and the violating transition t determines the condition that is
propagated to the component to trigger the delay.

Figure 13 shows the three system states used for the computation of synchronization con-
ditions. When a delayed transition td satisfies the safety rule violated by the transition
t and the combined transitions differ only by the transition of a component C, then that
component can be delayed to make the safety violation unreachable. The enabling condi-
tion for the delayed transition is the enabling condition of t combined with the priority
mask condition that contains the information on the components that have higher priority
than C. The Figure 13 shows the states LL with both clients in their local state, AA with
both clients in the access state, and AD with client 1 in the access state and client 2 in
the delay state. The following algorithm finds the components that need to be delayed,
and computes the delay conditions.

• For all states sd that satisfy the safety rules, with a transition td from ss to sd do
loop:

• If the transition td from ss to sd is not enabled by the same condition cv as the
transition t then break.

• If some component transition in t is a delayed version of the transition by the same
component in td then break.

• If td differs from by more then one component transition then break.

• Identify the component C that is delayed in td and completes the transition in t.
This component causes the safety violation, and has to be delayed.

• Identify states scs, sc and scd where the component C makes a transition from scs
to sc in t, and from scs to scd in td.

Assign the set of components that complete their transitions in both t and td to the
priority mask condition cp

Assign the conjunction of the enabling condition cv for t and the priority mask cp
to delay enabling condition cd.

Generate a delayed transition from scs to scd in component C, enabled by the
condition cd.

•

•

•

For behavior rules which are specified as regular expressions, the analysis is based on the
combination of the related components and the finite state representation of the rule. The
analysis then consists of checking if any of the rejecting states in the rule representation is
included in some reachable global state. The way to improve the system in those cases is
based on simple elimination of the offending states from the combined system description.

24

5 Related Work

This section shows some related approaches in the design and verification of concurrent
systems. The emphasis of most of these systems is on the formal assurance that the crit-
ical system requirements are satisfied. The main distinction between GenEx and these
verification systems is in the programming paradigm they use. The verification systems
take a description of the system and its requirements, and verify the consistency between
them. The system development using GenEx is based on the automatic generation of the
system synchronization code that will guarantee its consistency with the safety require-
ments. GenEx and other design-oriented systems generally support a subset of properties
that can be handled by the verification systems, but their use generally results in faster
development.

Correctness verification is an essential part of the development of complex concurrent and
distributed applications. Testing can provide an estimate of the system reliability and
correctness, but it covers only a subset of all executions, so errors can remain undetected.
Formal checking efforts in the area, of concurrent systems have been concentrated in two
major areas: proving temporal properties of finite system abstractions, and trying to prove
that implementations satisfy the specifications. Proving correctness of abstract descrip-
tions is of limited use because of the possible discrepancies between the implementation
and the description. In general the scalability of this approach is limited by the complex-
ity of the system. When complexity is kept low, mcb [Bro86, CES86] can successfully and
efficiently check formulas in first order temporal logic CTL. PAL [YY91], [YY93] is a com-
positional reachability analysis tool that uses algebraic methods to reduce the state space
of the problem. It allows the checking of more complex problems, but some examples can
force it into searches of exponential size.

Proofs on real code are rarely used because their complexity is generally unacceptably
high, and they are often undecidable. Some systems try to extract abstract information
from the source and do partial analysis. STeP [ZM+94] tries to prove the given assertions
automatically and when that fails it lets the designer guide the proof by choosing the
assertions that are to be proved. Analyzer [CG95] requires additional information related
to the abstract description to be inserted in the source code, and combines it with the
program reachability graph to check the consistency of the program and SCR [Hen80] style
specifications. Due to the undecidability of the program behavior, this analysis is either
optimistic or pessimistic, and exact analysis is impossible. The requirement to annotate
the code for analysis has a positive side-effect, it forces the designer to understand and
document the relationship and the mapping between the specifications and the code. These
two systems both support the idea that automatic checking is unable to deal with the data
processing aspect of computation, and human involvement is required in system validation
and verification. GenEx is defined in the domain of system interaction, where automated

25

verification and synchronization is possible because it is isolated from the data processing
aspect, and its complexity is inherently limited to the finite-state domain.

Compositional and symbolic model checking are two approaches that try to reduce the com-
plexity of the state space representations. Compositional model checking [CLM89], [FG94]
tries to limit the complexity by constructing abstractions that can represent system com-
ponents in further analysis of the given properties. By eliminating states that are irrelevant
to the property, it can achieve significant reduction in the complexity of the analysis. This
approach is orthogonal to automatic synchronization, and the same abstraction and re-
moval of irrelevant states can be used in GenEx to reduce the complexity of the reachability
analysis. Symbolic model checking [BCM+90] relies on the symbolic representation of the
state space, where regularities in the state space are exploited to minimize the complexity
of the representation. These techniques are very powerful analysis tools, but they require
the designer to correct all inconsistencies. Also the correctness of the abstraction in no
way guarantees the correctness of the implementation done by hand, a fact that reduces
the practical applicability of those systems.

The concept of product state machines, as described in [Lim93], [Lim96] is conceptually
very similar to GenEx, and the main difference between them is the scalability. The
approach in Lim's system is that the global reachability graph is actually constructed and
restricted to eliminate violation states, and the restricted graph is used in the execution. As
discussed before, this approach does not scale to the level of realistic software systems. The
situation is different in hardware based or manufacturing systems where the complexity
generally has to be such that it can be completely captured. Other similar approaches exist
in the hardware design area where the behavior of circuits can be completely modeled and
the sequential circuit is generated as an instance of the verified model. Conceptually,
GenEx does the same thing, but the emphasis is on the local analysis and synchronization
of components, and the complexity is kept low because the synchronization mechanism for
every safety rule is independent.

Automatic code generation is a technique that has been used in many areas of software
engineering, and it greatly increases the consistency and the reliability of the generated
systems. Lex and Yacc generate code that parses a given language, based on the grammar
and operator priorities in the language. The code is generated for a modified version of the
grammar that is obtained by eliminating the ambiguities from the original grammar ac-
cording to the specified priorities. Polylith and other configuration languages automate the
interfacing between application components based on the global connection descriptions.
GenEx extends this automatic interfacing concept by using safety properties as rules that
guide the synchronization process. The performance of the generated code is potentially
very high, because our descriptive model is based on deterministic finite state machines
that can be naturally mapped into efficient executable code.

26

Several systems have used the code generation to implement synchronized concurrent sys-
tems, LUSTRE [CRR91] and Esterel[BG92] being based on a similar model of computation
as GenEx. These systems use a synchronized model of computation, making them simple
to analyze and generate code for. Both LUSTRE and Esterel support the verification of
given system properties versus the system behavior. The main difference about GenEx is
that instead of verifying that the specified system satisfies the given properties, it actually
computes the necessary synchronization of the components that makes the system con-
sistent with the given safety properties. This is a fundamental difference because GenEx
allows the programmer to give a partial system description, and have it automatically
refined to satisfy the given set of rules; the other systems would notify the programmer if
the description satisfies the rules and if not, the design would require some changes by the
programmer. Apart from requiring high skill, the manual refinement might also involve
sizeable effort because the physical size of the description might have to increase.

TRACTA is another compositional verification system with code generation support. The
execution model in TRACTA uses an even stronger version of synchronization, embod-
ied by the labelled transition system(LTS). The synchronization in LTS is based on the
synchronous transitions by all components that use a given label. This synchronization
is context-based, unlike simple synchronous execution of all components used in GenEx
, LUSTRE and Esterel. The expressiveness of LTS makes it possible to design very ele-
gant systems, using similar decomposition to that used in GenEx. The main drawbacks
of TRACTA come from the strong synchronization provided by LTS. The LTS models are
hard to design without deadlocks, and their implementation on distributed systems is of
questionable efficacy. Although TRACTA reduces the analysis space using compositional
verification, the complexity can be an exponential function of the number of components
in the system

Another related concept is that of Safety Kernel [WK95] that is less formal, but involves
the code generation capability and automatic safety implementation. This centralized, and
more importantly sequential, paradigm makes the code generation trivial by reducing it
to a simple runtime check of the desired property. The main shortcoming of this system
is its orientation towards centralization, that is useful in its domain of safety enforcement,
but not really applicable to the concurrent and potentially distributed systems. The in-
applicability is due to the notion of a centralized safety kernel that controls all accesses,
while the concurrent and distributed systems require the maximum possible decentraliza-
tion. Despite this shortcoming, the system is an example of how simple methods can solve
complex problems, given the right domain.

The decomposition aspect of our method is based on some features introduced by the con-
figuration languages such as Polylith [Pur94] and Darwin [JM]. Separation of conceptual
description from the implementation is a powerful concept that provides these languages
with great flexibility in porting applications between different environments, due to their

27

support for mapping the concepts to a given physical structure. Unlike configuration lan-
guages, GenEx supports extracting behavior information to the conceptual level, where it
can be used in the refinement of the system to comply with the given set of rules. While
the goal of GenEx is similar to the configuration languages, to simplify the interaction
between system components, the domains where they operate are clearly distinct and they
can be combined in the construction of a concurrent system where GenEx would generate
the synchronization code, and Polylith can provide the data communication between the
components, as well as the underlying communication for the GenEx runtime kernel.

6 Proposed Research and Future Work

The goal of automatic rule-based synchronization is to integrate the independently devel-
oped components into a concurrent or distributed system whose behavior satisfies the given
safety rules. The basic assumption is that each component is "delayable", i.e correctness of
its execution is time-independent. Given a set of delayable components, the global behav-
ior of the system can be integrated using local analysis and refinement, without the need
for the computationally costly global analysis. This approach helps to reduce development
time and, even more importantly, maintenance time for complex concurrent systems.

The application of automatic synchronization in software design provides the users with
a synchronization skeleton that is created based on the given set of safety rules. The
generated code also has a simple interface to link it with the data processing code, whether
it is implemented manually or generated by other tools. The generated code is very efficient
because it consists of a single table lookup for every component in the system. Even more
importantly, the performance is predictable because the overhead of the table lookup can
be accurately estimated.

The remaining work for the completion of the GenEx automatic synchronization system
involves the completion, integration and assessment of achieved results. The first priority
is the completion of the missing functional units for the system, such as the static safety
violation prevention, and the global deadlock detection and removal algorithm. Another
aspect of system completion is the necessary optimization of some computationally in-
tensive functional units. The optimization is necessary to improve the performance of
the analysis tools that are currently written in prolog, and therefore very inefficient, and
the optimization strategies range from reordering data fields within prolog predicates to
rewriting the analysis tool in a compiled programming language such as C.

The next task is the integration of all these parts into a functional prototype that imple-
ments the automatic synchronization method. The integration of the system requires a
front-end interface that analyzes the safety rules and generates a script with the necessary

28

sequence of automatic synchronization operations. Other integration aspects include the
interfaces to temporal logic verification tools such as SMV [McM93].

6.1 Static Violation Detection

The automatic synchronization based on the construction of combined reachability graphs
has one important drawback. The computational complexity of the graph can exceed the
available processing capacity or, the time required to compute the synchronization changes
can become too large to be acceptable in practice. Both of these problems are direct results
of the combinatorial nature of the global system behavior, and they can be alleviated by
different analysis approaches, but it is improbable that they can be solved completely.

An alternative to combined reachability graph construction is the static analysis method
that is based on the detection of transition combinations that can lead to safety viola-
tions. Every potential safety violation is identified, and all possible delayed versions of the
transition are added to the system as alternatives that preserve the safety. This approach
has the advantage that it only requires the construction of a single-layer precedence graph
for the violation states, as opposed to the whole combined reachability graph. Since the
reachability graph is not constructed, some of the detected violations may be unreachable,
and their delayed versions may never be executed. The addition of transitions that will
never be taken does not change the behavior of the system, and only imposes some run-
time overhead in the transition selection phase. This overhead should be an acceptable
tradeoff to preserve the automatic synchronization capability when the complexity of the
exhaustive reachability graph approach is unacceptably high. It is specially useful in the
early design phases, when changes in the system occur more often, and the performance
requirements are less strict. Multi-layered violation precedence graphs can be used to
detect more unreachable transitions, and eliminate them from consideration.

The single-layer violation precedence graph has a lower complexity than the reachability
graph, but its size is still an exponential function. Instead of being a function of the number
of states per component, the complexity of the violation precedence graph is a function of
the number of transitions that may lead to a violation in each component. This should
result in a great complexity reduction when complex components and safety properties8

are involved.
8Complex here refers to the representations of the components and rules having larger number of

states. For example, invariant properties are considered simple, and their representation consists of only
two states, one of which is a rejecting state. On the other hand, complex properties could be those with 2
or more non-rejecting states, because each such property at least doubles the complexity of the reachability
graph. Priority, fifo access, sequence scheduling are examples of such complex properties.

29

DEADLOCK CYCLE

Figure 14: Blocking graph cycle detection of deadlocks. The directed edges connect a blocked
component with a component that is blocking it.

6.2 Static Deadlock Detection

A well known effect of synchronization by blocking processes is the appearance of dead-
locks. While mutual exclusion, and priority violations that the user specifies are domain
dependent safety violations, the deadlock is a systemic fault that appears as a potential
result of the synchronization when some components are required to wait for events in
the system that allow them to continue the execution. Since deadlocks are an implicit
byproduct of the blocking synchronization, they have to be identified and removed from
the system just as the user-specified safety violations are.

Deadlocks can be a result of the synchronization for a single safety rule, or of multiple
safety rules defined on overlapping sets of components. If a single safety rule produces the
deadlock, and the rule is satisfied using the combined reachability graph, the deadlocked
state is easy to detect and remove like other safety violations in the graph. In the case
of static analysis or when multiple rules lead to a deadlock, a cycle detection algorithm
is used to identify the deadlocked components and states. The delayed transitions of all
components make the nodes of the deadlock detection graph, and the edges are directed
between transitions that may block one another. Figure 14 illustrates how a cyclic blocking
may exist between components of a system, and how it differs from acyclic blocking that
exists between correctly synchronized components.

While the deadlocked states in reachability graphs can be removed immediately, the dead-
locks which are identified by the cycle method should not be treated as new safety viola-

30

tions. This is because the synchronization for the additional rules would simply generate
new deadlocks, and the complexity of the analysis would increase due to the increased num-
ber of components referenced by the safety rule. The alternative approach to solving these
deadlocks is the relaxation of the state correspondence for the delayed transitions. Instead
of having the delayed state represent the source state, with the capability to continue the
actions started in the source state, a relaxed delayed state becomes a new, do-nothing
state that can not interact with any other component in any way.

The relaxation produces idle states in components, and its application should be kept to
a minimum. The components to be relaxed should be chosen by the number of different
deadlocks they prevent, and by the importance of their activity in the system. User should
be able to direct this process by declaring the critical components or transitions that should
not be relaxed.

6.3 Synchronization Case Studies

The practical applicability of the system has to be verified on different types of problems,
to assess its performance, reliability and suitability for problems of realistic size. The most
important use of the automatic synchronization method is in the systems that comply with
potentially evolving safety requirements. The verification of the suitability of automatic
synchronization for this type of system involves two factors: the ^synchronization capabil-
ity, and the preservation of the interface compatibility between the generated code and the
user-supplied data processing code. These capabilities will be verified on the client-server
example by modifying the types of safety rules and protocols required from the system.

The capability to handle concurrent systems of non-trivial complexity is the most impor-
tant requirement for the practical applicability of automatic synchronization. Verification
of the scalability of the automatic synchronization method will be based on concurrent
systems whose complexity is a result of the number rather then the complexity of the com-
ponents and synchronization rules. The client-server example with incremental increases
in the number of components will be used to verify the scalability of the analysis of this
class of systems. Successful synchronization of complex systems supports the claim that
the synchronization complexity does not depend on the complexity of the whole system,
but on the complexity of the individual components and safety rules.

Verification of the performance and reliability of the system will be based on standard
synchronization problems such as the dining philosophers or cruise control. This type
of synchronization problems provides a benchmark to compare the code generated by
automatic synchronization with manually generated applications or with code generated
by other automatic methods.

31

Additional case-studies will address the issues of non-finite state systems such as stacks/buffers
and event counting, and other aspects of interaction that the automatic synchronization
does not satisfy directly, such as real-time behavior, asynchronous execution and delays
in the sharing on global state information. Even if the complexity of the analysis for these
properties is unacceptably high, the automatically synchronized systems can be used to
address them. The adaptations usually involve some manual changes to the architecture
of the components or the global shared data, and some of that could even be automated.

The benefits of using the automatic synchronization method have to be compared to those
of other methods for producing concurrent systems. I am currently aware of only two
systems that consider the safety requirements in an abstract form and implement them in
the executable system, The Safety Kernel concept [WK95], and the State Combination ap-
proach by Lim [Lim93]. The system will also be compared to systems that are based on the
verification of user generated concurrent systems such as Esterei [BG92] or SMV [McM93].

7 Conclusion

As described in the previous sections, the process of automatic rule-based synchronization
takes a set of system components and system safety requirements, and produces an inte-
grated system consistent with the given requirements. Thanks to the embedded interfaces,
the system is readily linkable with data processing code that is manually developed or pro-
duced using other software generation tools. This method allows very quick development
of high reliability concurrent applications, and increases its reusability and maintainability
by supporting automatic resynchronization whenever the components or the safety rules
change. The synchronization process itself is organized in a way that limits the computa-
tional complexity of the analysis, and guarantees that the system synchronization will be
successful even for very complex systems.

References

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.J. Dill, and L.J. Hwang. "Symbolic
Model Checking: 1020 States and Beyond". In Proceedings of the Fifth Annual
Symposium on Logic in Computer Science, pages 428-439, June 1990.

[BG92] G. Berry and G. Gonthier. "The Esterel Synchronous Programming Language:
Design, Semantics, Implementation". Science of Computer Programming, 1992.

32

[Bro86] Michael C. Browne. "An Improved Algorithm for the Automatic Verification of
Finite State Systems Using Temporal Logic". In Proceedings of the Symposium
on Logic in Computer Science, pages 260-266, August 1986.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. "Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications". A CM Trans-
actions on Programming Languages and Systems, 8(2):244-263, April 1986.

[CG95] M. Chechik and J. Gannon. "Automatic Analysis of Consistency between Im-
plementations and Requirements". Technical report CS-TR-3394, Dept. of CS,
University of Maryland, College Park, January 1995. (in preparation).

[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. "Compositional Model Check-
ing". In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science, pages 464-475, June 1989.

[CRR91] N. Halbwachs C. Ratel and P. Raymond. "Programming and veryfying crit-
ical systems by means of the synchronous data-flow programming language
LUSTRE". Software Engineering Notes, pages 112-119, ? 1991.

[dLSA95] Rogerio de Lemos, Amer Saeed, and Tom Anderson. "Analyzing Safety Re-
quirements for Process-Control Systems". IEEE Soßware, 12(3), May 1995.

[EC82] E. Allen Emerson and Edmund M. Clarke. "Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons". Science of Computer Program-
ming, 2(3):241-266, Dec 1982.

[FG94] Jeffrey Fischer and Richard Gerber. "Compositional Model Checking of Ada
Tasking Programs". Technical report, University of Maryland College Park,
February 1994.

[Hen80] K. Heninger. "Specifying Software Requirements for Complex Systems: New
Techniques and Their Applications". IEEE Transactions on Software Engi-
neering, SE-6(1):2-12, January 1980.

[JEH79] Jeffrey D. Ullman John E. Hopcroft. Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley, Reading, MA, 1979.

[JM] Jeff Kramer Jeff Magee, Narankar Dulay. " A constructive Development Envi-
ronment for Parallel and Distributed Programs ".

[Lim93] Alvin See Sek Lim. " A State Machine Approach to Reliable and Dynamically
Reconfigurable Distributed Systems ". PhD thesis, University of Wisconsin.,
Madison, Wisconsin, 1993.

33

[Lim96] Alvin Lim. "Compositional Synchronization". In International Conference on
DCS, 1996.

[LL95] Claus Lewerentz and Thomas Lindner. "Formal Development of Reactive Sys-
tems". Springer Verlag, Berlin, 1995.

[Man96] Toni Mandrioli. COMPASS 1996 Keynote Address, 1996.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[Pur94] James Purtilo. "The POLYLITH Software Bus". ACM Transactions on Pro-
gramming Languages and Systems, 16(1):151—174, jan 1994.

[WK95] Kevin G. Wika and John C. Knight. "On the Enforcement of Software Safety
Policies". In Proceedings of the Tenth Annual Conference on Computer Assur-
ance, pages 83-93, June 1995.

[YY91] Michal Young and Wei Jen Yeh. " Compositional reachability analysis us-
ing process algebra". In Proceedings of the Symposium on Softvare Testing,
Analysis and Verification (TAV 4)-, pages 49-59, October 1991.

[YY93] Michal Young and Wei Jen Yeh. " Compositional reachability analysis of Ada
Programs Using Process Algebra". July 1993.

[ZM+94] Nikolaj Bjorner Zohar Manna, Anuchit Anuchitanukul et al. " STeP: the Stan-
ford Temporal Prover". June 1994.

34

ROTATING TABLE

Figure 15: The Production Cell system

A Production Cell Controller

Our method automates the integration of FSM-based concurrent and distributed systems.
Many other methods work with the same kind of systems, and simplify the design using
a variety of integration, verification and analysis tools. To assess the quality and the
potential of our method, we will analyze its effects in the development of an industrial
safety critical control system, where many other methods have been used with the same
goal. We will attempt to design a controller for the production cell system [LL95] used for
a case study of over a dozen formal design methods for concurrent systems.

The production cell system in Figure 15 is an example of a controlled concurrent system
with decomposable interaction between the components. The production cell contains five
independent devices that have to synchronize with each other to achieve correct behavior.
The devices are: a press that processes metal blanks, a rotating robot with two extendable
hands that places blanks in the press, and takes them out after they are processed, a
feeding belt that brings the blanks , a rotating table where the blanks are deposited to
be picked by the robot, and a deposit belt where the robot deposits the processed blanks.
A crane between the feeding and deposit belt maintains a continuous stream of blanks
coming into the system.

Each component of this system has some individual restrictions on their mobility, and the
interaction between them has to occur within predefined parameters to preserve the safety
of the system. The safety of the system is violated by collisions between components, and

35

by the inappropriate handling that results in blanks being dropped. The collisions occur
when two machines work in the same area, while metal blanks can be dropped when the
machines are not in compatible states for transfering them.

The goal of the controller is to synchronize the machines to accept the blanks, press them
and deposit the pressed blanks on the deposit belt. The component behavior is outlined
by the authors, in the form of finite state machines, and we use those descriptions to create
our own controller for the system. Our controller consists of the component controllers,
taken from the system specification, and synchronization and safety rules that specify the
restrictions on the interaction between the machines. The synchronization and safety rules
are also in the form of FSM, and they monitor the behavior of the components, signalling
safety violations when the components interact in undesirable ways. The integration ana-
lyzes the behavior of the components and uses the detected safety violations to delay the
transitions that generate those violations. The components can complete their delayed
transitions only when they no longer endanger the system safety. This way, the safety of
the system is guaranteed by design, and the generated controller enforces it.

A.l Components

The simplest components of the production cell system is the feed belt. The belt is equiped
with a sensor that detects when a metal blank reaches the end of the belt, and it accepts
one controlling signal specifying whether to move or stop. The behavior of the feed belt
is simple: it should move until a blank is detected at the end of the belt, then it should
stop and restart when the rotating table is ready to receive the blank. This behavior is

formally defined in Figure 16a).

The deposit belt is similar to the feed belt, but its behavior is somewhat different because
it has to wait for the crane to take the blank off the belt rather then just drop the blank.
The behavior of the deposit belt is the following: it moves until a blank is detected by the
sensor, and passes by it; when the sensor no longer detects a blank, it is in position to
be lifted by the crane. After the crane lifts the blank, the deposit belt can restart. This
behavior is defined in Figure 16b).

The rotating table can move vertically, adjusting its height to receive the blank from the
feed belt, and to allow the robot to pick the blank with the magnet on its arm. The table
also rotates to position the blank in the correct position to be picked up by the robot.
The behavior of the rotating table follows: it starts in the low inline position, and then
rises and rotates clockwise until it gets to the high and diagonal position. From the high
diagonal position the table lowers and rotates counterclockwise until it gets to the low
vertical position. This behavior is denned in Figure 16c).

36

The press moves only vertically, and has three height sensors that detect its position. The
sensors can detect the high position when the press closes and processes the metal blank,
the medium position when the press is ready to accept a new blank from the robot, and the
low position when the processed blank can be picked up by the robot. The press receives
a new blank in the medium position, and then presses it until it reaches the high position.
After the blank is pressed the press opens until it reaches the low position where the blank
can be picked up by the robot. Then the press closes until it reaches the medium position
where a new blank can be received.This behavior is defined in Figure 16d).

The robot performs two functions in the system, its first arm carries blanks from the
rotating table to the press, and its second arm takes processed blanks from the press and
places them on the deposit belt. The robot can rotate as a whole, extend and retract
both arms individually, and pick blanks by activating magnets on the arms. The robot
also senses its rotation angle, and the extension of the arms to help it in the correct
positioning. The detailed behavior of the robot is as follows: it picks a blank from the
table, then rotates and extends arm two to pick a processed blank from the press. Next, it
rotates counterclockwise and retracts the second arm to drop the processed blank on the
deposit belt and then rotates more to drop the new blank from first arm onto the press.
After that it retracts both arms and rotates clockwise until the first arm points to the
rotating table and extends it to pick a new blank.

The crane takes blanks form the deposit belt and places them on the feed belt to maintain
continuos operation. The crane can move horizontally between the two belts, and vertically
to adjust its height to the level of the belts. The crane is equiped with three sensors, two
signal when the crane is in the correct horizontal position over the belts, and the third
provides the information on the crane elevation. The crane moves to the deposit belt, and
lowers to its level to pick a processed blank. Then the crane lifts the blank, and travels to
the feed belt where the blank is lowered and dropped when the crane magnet is turned off.

The common denominator of all described components is that they are all independent
from each other. Each component is described only in terms of its position without regard
to the state of other components. But it is clear from the description of the system that
these components have to be synchronized to pass the metal blanks. The rotating table
has to wait for the blank from the feed belt before starting to raise and rotate, and the feed
belt has to wait for the rotating table to come to the low inline position before starting
to unload the blank. This informal description of the desired interaction between the
components is easily formalized into a safety rule that requires that behavior.

The safety rule FEED-TABLE in Figure 17a) specifies the interactions between the feed
belt and the rotating table that should be made unreachable in the executable version of
the controller. The safety violations are defined as transitions to the state reject of the
safety rule. The safety rule prohibits the feed belt from entering the UNLOADING state

37

FEED BELT b) DEPOSIT BELT

DIAG/STOP_H

Figure 16: Components of the Production Cell system

until the rotating table gets to the LOW-INLINE state where it can accept a new blank.
Once the table is in the state where it can accept the new blank, it is not allowed to
start rising until the feed belt unloads a blank on it. After the new blank is passed to the
rotating table, it is allowed to start rising and the safety rule prohibits the feed belt from
unloading until the rotating table returns to the low inline position.

This safety rule enforces what is basically a handshaking algorithm for the feed belt and
the rotating table. It requires a specific interleaving of transitions by the two components,
insuring that the feed belt unloads the metal blank on the rotating table. Although the
components are defined independently, this rule references both of them, and enables the
integration process to modify their interaction by delaying one or the other and allowing
them to complete the delayed transitions only when they preserve the safety.

The safety rule ARMl.TABLE in Figure 17b) specifies the interaction between the robot

38

FEED TABLE

a)

ARM1 TABLE

b)

Figure 17: Some safety rules for the Production Cell

and the rotating table when the first robot arm picks a new blank from the table. This
safety rule requires the robot to wait for the rotating table to get to the high diagonal
position before the robot starts extending its arm to pick the blank, and requires the
rotating table to remain in the high diagonal position until the robot succeeds in picking
the blank. The two FSMs are isomorphic, and the same applies to all other safety rules
for this system. In every case one component has to wait for the other to complete some
action that transfers the metal blank between them. The simplicity and uniformity of the
safety rules makes this system description very compact and intuitive. The independence
between the components simplifies design and maintenance and promotes component reuse
for similar systems.

A.2 System Integration

The integration of our production cell controller starts with a safety analysis of the com-
ponent behavior.

The integration of our production cell controller consists of several phases where the com-

39

ponents and safety rules are analyzed, modified and finally combined into an executable
model. The analysis phase tries to identify all possible ways the safety rules might be vi-
olated by the components, and these violations are memorized. For every safety violation
one or more components are identified for causing it; these components will be delayed to
preserve the safety. The delayed transitions substitute the original transitions whenever
the preconditions for the safety violation are satisfied. The components are modified to
include the delayed transitions in their description, and the code is generated from the
modified components and safety rule descriptions.

We will show the main phases of this process in more detail on the analysis and integration
of the feed belt and the rotating table using the safety rule FEED-TABLE. This safety
rule references only the feed belt and rotating table, and thus only these components can
lead it to safety violations. We limit the analysis to those components and thus significantly
reduce its complexity. The highest possible complexity of the combined behavior of these
two components and their safety rule is the product of the numbers of their states. In this
case that is 4*8*5 = 160 states, and that complexity is easy to analyze automatically.
Since only one state per component can cause a safety violation, there are 4 possible
violations: When the table starts to rise while the safety rule is in the state TBL-READY
or UNLOADING, or when the feed belt starts unloading while the safety rule is in the
state FREE or UNLOADED. We can use these potential safety violations for component
delays without analyzing their reachability, thus reducing the complexity even further.

The first phase of the integration is the addition of delayed states and the creation of a
shared global variable pool where the system state data resides. The delayed states are
the states where the components remain while their transitions are delayed, and one state
is necessary for every delayed transition. In this system only transitions from BLANK to
UNLOADING in the feed belt, and from LOW'.INLINEto RISE-INLINE may need to be
delayed to satisfy the FEED-TABLE safety rule, because only those transitions lead to
a state that may violate the safety 9. After adding the delayed states to the components,
we generate the shared state variables. These consist of: the environment variables, both
the monitored (sensor inputs) and controlled ones (control signals), the component and
safety rule state variables, and the nondeterministic priority variables. The state variables
encode the global state of the system, and they provide the information on the violation
preconditions for the detected safety violations. The priority variables have a purpose
when resource utilization is specified using safety rules, but in this system all safety rules
require only action sequencing and the priority variables are redundant.

The analysis of the reachability graph for this safety rule requires a graph with 100 states,
and detects the safety violations described earier. The safety violations occur when one of

9 Other delayed states are added to these components because other transitions may violate other safety
rules, but these are the only ones necessary for the enforcement of the FEED-TABLE rule.

40

FEED BELT

FEED_TABLE = FREE/-
FEEDTABLE = UNLOADED / -

FEED_TABLE = FREE/-
FEED.TABLE = UNLOADED / -

(!FEED_TABLE = FREE) &
(!FEED_TABLE = UNLOADED) / START

Figure 18: The modified feed belt component

the following preconditions is satisfied:

TABLE = LOW-INLINE & FEED-TABLE = TBL-READY
TABLE = LOW-INLINE & FEED-TABLE = UNLOADING
FEED = BLANK & FEED-TABLE = FREE
FEED = BLANK & FEED-TABLE = UNLOADED

The feed table causes the safety violation when it rises while the FEED-TABLE is in
states TBL.READYor UNLOADING. That means that the transition from LOW-INLINE
to RISE-INLINE has to be delayed until a blank is unloaded. The enabling conditions
for the delayed transitions are taken directly from the violation preconditions. The same
conditions that select the delayed transition, also enable the looping transition in the
delayed state, and prevent the component from completing the transition before the safety
preservation is guaranteed. The transitions from LOW-INLINEto LOW-INLINE-DELAY
are enabled when one of the following conditions holds:

FEED-TABLE
FEED-TABLE

TBL-READY
UNLOADING

The delayed transitions are given a higher priority then the original transitions, thus pre-
venting the original transitions from being enabled on a subset of its original enabling
conditions. The subset of the original enabling condition where the delayed transition is
selected corresponds to the intersection of the enabling condition and the safety violation
precondition. The same process will generate delayed transitions from BLANK and loop-
ing transitions in the delayed state BLANK-DELAY for the feed belt with the following
enabling conditions:

FEED .TABLE = FREE
FEED-TABLE = UNLOADED

The resulting component FEED-BELT is in Figure 18. The delayed state BLANK-DELAY

41

is reachable when the safety rule FEED-TABLE is in the states FREE or UNLOADED,
and the same conditions keep the component in the same state. The original transition
from BLANK to UNLOADING is enabled only when the delayed transition is not, so this
coomponent can no longer cause safety violations for the safety rule FEED-TABLE.

This process is repeated for every safety rule and its referenced components, and results
in a set of delayed transitions enabled by the safety violation preconditions. The delayed
transtions for a given component are combined without interference because they all apply
to single states. After analyzing all safety rules and adding delayed transitions to all com-
ponents that need them, the controller is constructed by combining the components and
the safety monitors derived from the safety rules. The safety monitors model the behavior
of the safety rules used in the analysis, and provide the components with the information
on their state needed to evaluate the enabling conditions for the delayed transitions.

A.3 System Verification

The requirements for this system include a number of safety properties and one liveness
property. The main safety properties define the limits of machine mobility, the machine
collisions and the conditions when the metal blanks are dropped outside safe areas. The
machine mobility properties specify the safe ranges for the operation of individual ma-
chines, that may be damaged if the limits are not respected. Since these properties are
individual for each machine, the controller components implement them directly. An ex-
ample is the rotating table component in Figure 16c) that monitors its height and rotation
angle and stops immediately when the table reaches the desired positions within the safe
limits. It is obvious from the FSM that the rotating table respects the machine mobility
requirements in its original form.

Since the components are modified by the addition of delayed transitions, it is conceivable
that some transition whose effect is to stop the machine could be delayed, thus leaving the
machine to move without control. The mobility limits are preserved if the transitions that
stop the machines when they reach a desired position are never delayed. This condition
holds in our system because the safety rules only reject the states when the machines
initiate a new movement. This is an informal proof of preservation of machine mobility
limits. The same properties can be proved formally using the symbolic model checker SMV,
on a partial model of the controller generated by GneEx. To verify the mobility limits
safety, the partial model only needs to include the component itself, and the complexity of
the analysis is limited to the size of its FSM. The machine mobility limits are represented
by CTL formulae that specify that the machine stops immediately when it reaches its
destination position. The properties that verify the limits on the table rotation and raising
are given below:

42

AG(((tbl_high_pos = 1) & (tbl.raise = 1)) -> AX(tbl_raise = 0))
AG(((tbl_diag.pos = 1) & (tbl.rotclk = 1)) -> AX(tbl_rotclk = 0))

There are various reasons for machine collisions, one of them being the violations of mobility
limits. Namely, if the rotating table rotates counterclockwise past the position in line with
the feed belt, it will collide with the belt. Other collisions may occur if the robot arms
are too extended during rotation or if the crane is too low during horizontal movement.
These components are designed to avoid those collisions by retracting the robot arms and
lifting the crane during movement, according to the constants given in the specifications.
Another cause of collisions is wrong synchronization when the blanks are being passed
between machines. These collisions are prevented by the safety rules integrated with the
system. The safety rules only allow the components to approach when their states are
compatible, and collisions are impossible.

A related type of problem is the collision between blanks, it happens when a new blank
is unloaded on the rotating table or press while the previous one is still there. This type
of collision is also prevented by the safety rules integrated in the controller, because they
require both components to exit the state where the transfer is possible before allowing
them to initiate another transfer. When the components leave a state where they receive
a blank, they have to go through a state where the robot picks the blank before being
able to accept another blank. This shows how the handshaking algorithm implemented by
the safety rules forces the components to synchronize for the transfer of blanks, and leave
those transfer states to allow the transfer of blanks to other machines.

The last type of safety requirement in the production cell system are the rules governing
where the metal blanks may be dropped. These rules specify that the feed belt may only
unload a blank to the rotating table in its low position and in line with the feed belt, or
that the robot may only drop a new blank on the press, meaning that its first arm points
to it and is sufficiently extended. These rules are also enforced by the integrated safety
rules that synchronize the behavior of the components. Some of these rules are given below
using CTL notation for invariant properties.

Table in low position when feed belt is unloading
AG((feed = unloading) -> (tbl_pos_low = 1))

Arm pointing to press and extended when dropping new blank
AG((robot = drop_new) -> ((rbt_one_to_prs = 1) & (rbt_one_over_prs = 1)))

Table in high diagonal position when robot picks the new blank
AG((robot = pick.one) -> ((tbl_pos_high = 1) & (tbl_pos_diag =1)))

43

A.4 Executable Production Cell Controller

The integrated controller model contains all necessary functionality to control the pro-
duction cell system, and GenEx derives its executable model using the C programming
language. The generated code contains the representation of each component and safety
monitor, and is machine and architecture independent. Depending on the runtime support
used it can be executed on a single processor or a distributed network. The following gives
a flawor of the generated code for the feed-belt and its state BLANK.

SMG_feed_belt()
{

newstate= -1;
trans=0;

if(currentstate[_MD.feed.belt]==_ST_feed_belt in f.nothing)
{SMG.feed_belt__in__f.nothing(-l);}

if(currentstate[_MD_feed.belt]==_ST_feed_belt__in__f.plate)
{SMG.feed_belt__in__f_plate(-l);}

if(currentstate[_MD_feed_belt]==_ST_feed_belt f.plate f_unload__delay__l)
{SMG.f eed_belt__f _plate__f _unload__delay__l (-1) ;}

if (currentstate[_MD_feed.belt]==_ST_feed_belt__in__f.unload)
{SMG_feed_belt__in__f.unload(-1);}

if(currentstate[_MD_feed_belt]==_ST_feed.belt in f_move)
{SMG_feed_belt__in__f_move(-l);}

if(newstate!= -1){currentstate[_MD_feed_belt]=newstate; change=l; }
}

SMG_feed_belt in__f_plate(num)
int num;
{
if((sigl[_SG_tbl_inline_pos]==0)&&(sigl[_SG_feed_belt__f.blank] ==1)&&

(sigl[_SG_rot_table__rotctr]==l)&&(sigl[_SG_feed_table__ft.nothing]==l)i
((num==0)I I((num== -l)&&(newstate== -1))I I(num==l)))

{newstate=_ST_feed_belt__f_blank__f_unload__delay__l; SMG_action__80(); }
}

else
if(

((num==0)|i((num== -l)&&(newstate== -1))I I(num==22)))
-Cnewstate=_ST_feed_belt__in f.unload; SMG_action__81() ; }

>
}

44

The components are executed in parallel, and their results are propagated to the shared
state variables. The safety monitors are executed in the second phase, using the new
component state information. This makes the code match the simulation structure used in
the safety analysis and integration. This structure speeds the detection of safety violations
in the analysis and provides precise preconditions for synchronization. The code that
integrates the execution of components is given below.

dotransitionsl()
{

SMG.robotO
SMG_press()
SMG_crane()
SMG_dep_beltO;
SMG.feed.belt();
SMG.rot.table();
getsigsQ;

}

dotransitions2()

{

SMG_robotl_press();
SMG_robot2_press();
SMG_robot_belt();
SMG.robot.table();
SMG_dep_crane();

SMG.feed_crane();

SMG_feed_table();
propagationO;
getsigsO;

}

inputsignals()

{
input_signals_fn() ;

}

outputsignalsO

{
output_signals_fn();

}

45

The inputsignals and outputsignals functions are used to communicate with the environ-
ment, receiving monitored variables and sending control signals to the machines. The
inputsignals function is called before the components are executed in every phase, and the
outputsignals at the end of the phase when all new signals are computed. The user supplies
these body for these functions, and it is preferably in the form of external functions that
don't have to be typed in whenever the code is regenerated. Parts of the user supplied
functions are given below.

input_signals_fn(){
int inum[15];
float num[15] ;

scanf 07,d" ,&inum[0]) ;
if(inum[0] == 1)

else
scanf ("%d" ,&inum[l]) ;
if(inum[l] == 1)

else
scanf 07.d" ,&inum[2]) ;
if(inum[2] == 1)

else
scanf ('7.f",&num[3]);
if Gram [3] >= 0.5208)

else
if(num[3] >= 0.6458)

else
if (mm [3] <= 0.3708)

else

}

sigl[_SG_press_low_pos] = 1;
sigl[_SG_press_low_pos] = 0;

sigl[_SG_press_mid_pos] = 1;
sigl[_SG_press_mid_pos] = 0;

iigl[_SG_press_up_pos] = 1;
;igl[_SG_press_up_pos] = 0;

s
sig

sigl[_SG_rbt_ext_to_tbl] = 1;
sigl[_SG_rbt_ext_to_tbl] = 0;
sigl[_SG_rbt_one_over_prs] = 1;
sigl[_SG_rbt_one_over_prs] = 0;
sigl[_SG_rbt_one_retracted] = 1;
sigl[_SG_rbt_one_retracted] = 0;

output_signals_fn(){
if (sigl[_SG_tbl_raise] ==
if (sigl[_SG_tbl_lower] ==
if ((sigl[_SG_tbl_raise] —

if (sigl[_SG_tbl_rot_clk] =
if (sigl[_SG_tbl_rot_ctr] =
if ((sigl[_SG_tbl_rot_clk]

if (sigl[_SG_feed.move] == 1)
else

1)
1)
0) &

= 1)
= 1)
== 0)

printf("table_upward\n");
printf("table_downward\n");

(sigl[_SG_tbl_lower] == 0))
printf("table_stop_v\n");

printf("table_right\n");
printf("table_left\n") ;

:& (sigl[_SG_tbl_rot_ctr] == 0))
printf ("table_stop_li\n");
printf("belt1_start\n") ;
printf("beltl_stop\n") ;

46

These functions work with the standard input and standard output, because that is the
interface that the production cell simulator uses. A different interface to the simulator or
system would be simple to design using appropriate control or message passing mechanism
instead of the scanfand ■print} function calls.

The informal verification of system functioning requires a simulated or live execution, and
we did that using the production cell simulator produced by the study authors. The
simulated execution controlled a production cell system with three blanks simultaneously
in the system.

A.5 Conclusion

This example shows that using safety rules to specify the behavior of. concurrent and dis-
tributed systems can significantly simplify the system integration process. Our specifica-
tion uses very simple specification for both components and interaction rules, and produces
a correct and verifiable controller. The intuitive nature and simplicity of the components
and synchronization rules makes them easily reusable in other similar systems. The ca-
pabilities of our controller are comparable to those produced using other systems, and it
handles the maximum number of blanks that the simulator supports simultaneously in the
system. The time required to design our system is in line with the best of the systems
surveyed in the study.

The formal nature of the integration process guarantees that the produced system will
enforce the desired safety properties. The integrated model generation facility produces
partial models where the correctness of the system can be independently verified. Finally,
the generated code implements the verified behavior as a safe and reliable executable
system.

47

